Distributive *po*- in Polish

Christopher Piñón
Research Institute for Linguistics
Hungarian Academy of Sciences
pinon@nytud.hu

FDSL-5
Universität Leipzig
28 November 2003

Abstract

This talk has three main parts:

1. Introduction
2. A previous proposal: Filip and Carlson (2001)
3. A new analysis
Introduction

Polish, like many other Slavic languages, has a fairly productive prefix po- with a distributive meaning (whence ‘distributive po-’) that is used to create perfective verbs out of imperfective verbs:

(1) chować\(^i\), s·chować\(^p\) ‘hide’
 po·chować\(^p\) ‘hide (successively)’

(2) a. Sara s·chowała\(^p\) książki.
 Sarah hid books-\(\text{ACC}\)
 ‘Sarah hid the books.’

 b. Sara po·chowała\(^p\) książki.
 Sarah po-hid books-\(\text{ACC}\)
 ‘Sarah hid the books (successively)’

(3) z[e]·rwać\(^p\), zrywać\(^i\) ‘pick’
 po·zrywać\(^p\) ‘pick (successively)’

(4) a. Rebeka z[e]·rwała\(^p\) kwiaty.
 Rebecca picked flowers\(\text{ACC}\)
 ‘Rebecca picked the flowers.’

 b. Rebeka po·zrywała\(^p\) kwiaty.
 Rebecca po-picked flowers\(\text{ACC}\)
 ‘Rebecca picked the flowers (successively)’

(5) pękać\(^i\), pęknąć\(^p\) ‘crack [intr.]’
 po·pękać\(^p\) ‘crack [intr.] (successively)’
a. Drzewo pęknęłop.
 tree cracked
 ‘The tree cracked.’

b. Drzewo po-pękałop.
 tree po-cracked
 ‘The tree (successively) cracked.’

(7) \textit{u·mrzećp}, umieraći ‘die’
 po·umieraćp ‘die (successively)’

(8) a. Domownicy umarlip z głodu.
 housemates died from hunger.GEN
 ‘The housemates died from hunger.’

b. Domownicy po·umieralip z głodu.
 housemates po-died from hunger.GEN
 ‘The housemates (successively) died from hunger.’

Distributive \textit{po-} is compatible with a variety of overt determiners:

(9) a. Rebeka po·zrywałap wszystkie kwiaty.
 Rebecca po-picked all.ACC flowers.ACC
 ‘Rebecca picked all the flowers (successively).’

b. Rebeka po·zrywałap wiele kwiatów.
 Rebecca po-picked many.ACC flowers.GEN
 ‘Rebecca picked many flowers (successively).’

c. Rebeka po·zrywałap część kwiatów.
 Rebecca po-picked part.ACC flowers.GEN
 ‘Rebecca picked part of flowers (successively).’
d. Rebeka po-zrywała kilka kwiatów.
Rebecca po-picked several.acc flowers.gen
‘Rebecca picked several flowers (successively).’

e. Rebeka po-zrywała większość kwiatów.
Rebecca po-picked majority.acc flowers.gen
‘Rebecca picked most of the flowers (successively).’

However, it is sometimes incompatible with a singular NP (but see (6b)) or the universal determiner każdy ‘every’:

(10) a. #Rebeka po-zrywała kwiat.
Rebecca po-picked flower.acc
b. #Rebeka po-zrywała każdy kwiat.
Rebecca po-picked every.acc flower.acc

The meaning of distributive po- also suggests that the distribution is temporally realized as succession (though not necessarily as immediate succession):

(11) a. Sara po-otwierała wszystkie okna jedno
Sarah po-opened all-acc windows-acc one-acc po drugim.
after other-loc
‘Sarah opened all the windows one after another.’

b. #Sara po-otwierała wszystkie okna
Sarah po-opened all-acc windows-acc
naraz.

at-the-same-time
‘Sarah opened all the windows at the same time.’
A previous proposal: Filip and Carlson (2001)

In an article on the interaction of distributivity and collectivity with reciprocity, Filip and Carlson (2001, p. 452) discuss distributive _po_- in Czech and propose the following semantic analysis:

(12) \(po- \sim \lambda P \lambda Q \lambda e \forall u[u \subseteq \sigma x(P(x)) \land \exists e'[e' \subseteq e \land Q(u, e')] \rightarrow \exists e'[e' \subseteq e \land Q(u, e')]] \)

(13) a. Členové delegace se po·objímali\(^p\). members delegation.\(\text{gen} \) \(\text{RECIPR} \) \(po\)-embraced ‘The members of the delegation embraced each other (successively).’

b. analysis of (13a):
\[\exists e \forall u[u \subseteq \sigma x(\text{delegates}(x)) \land \exists e'[e' \subseteq e \land \text{RECIPR}(\text{embraced})(u, e')] \rightarrow \exists e'[e' \subseteq e \land \text{RECIPR}(\text{embraced})(u, e')] \]

There are at least four difficulties with Filip and Carlson’s analysis of distributive _po_- in (12):

1. Filip and Carlson treat _po_- akin to a universal determiner (e.g., _każdy_ ‘every’) that first applies to a nominal predicate _P_ and then to a verbal predicate _Q_. Syntactically, this means that _po_- first combines with an N’ and then with a V. However, Polish (Czech) morphology indicates that _po_- combines with a V, the result of which then combines with an NP. Consequently,
Filip and Carlson’s account cannot naturally handle examples in which the NP cannot be analyzed as a nominal predicate, e.g., *każde drzewo* in (14).

(14) Każde drzewo po-pękało\(^p\). (cf. (10b))
 every tree po-cracked
 ‘Every tree (successively) cracked.’

2. The definition of distributive *po-* says nothing about how the distribution over objects is temporally realized. However, it seems to be an ingredient of the meaning of *po-* that the distribution over objects should be temporally realized as succession (see (11)).

3. Most of the events in the denotation of the event predicate defined by distributive *po-* are intuitively ‘too big’ in that they may contain many events that have nothing to do with the meaning of the corresponding sentence. For example, according to the analysis in (13b), an event in which the members of the delegation embraced each other and in which President Kwaśniewski shook hands with President Bush in Kraków in June, 2003 would also make the sentence in (13a) true.

4. There is no apparent reason why distributive *po-* should sometimes be incompatible with a singular NP or the universal determiner *każdy* ‘every’ (see (10)).
A new analysis

The prerequisites for the semantic analysis are:

- a domain of physical objects: x, y, z, \ldots
- a domain of events (broadly construed): e, e', e'', \ldots
- a domain of times: t, t', t'', \ldots
- a proper part relation on these three domains: \subseteq
- a temporal trace function from events to times: τ

In what follows, a, b, c, \ldots are unsorted individual variables and P, Q are unsorted one-plce predicate variables, R is an unsorted two-place relation variable, and S is an unsorted three-place relation variable.

(15) a. $a \sqsubseteq b := a \sqsubset b \lor a = b$
 (a is part of b)

b. $a \circ b := \exists c [c \sqsubseteq a \land c \sqsubset b]$
 (a and b overlap)

(16) $\text{mpartn}(P, a) :=$

$\forall b [P(b) \rightarrow b \sqsubseteq a] \land$
$\forall b [b \sqsubseteq a \rightarrow \exists c [P(c) \land b \circ c]] \land$
$\forall b \forall c [P(b) \land P(c) \land b \circ c \rightarrow b = c]$

(P is a mereological partition of a)

(17) $\text{prop-mpartn}(P, a) :=$

$\text{mpartn}(P, a) \land \exists b \exists c [P(b) \land P(c) \land \lnot (b = c)]$

(P is a proper mereological partition of a)
(18) \textit{biject}(R, P, Q) :=
\begin{align*}
&\forall a[P(a) \rightarrow \exists b[Q(b) \land R(a, b)]] \land \\
&\forall a[Q(a) \rightarrow \exists b[P(b) \land R(b, a)]] \land \\
&\forall a\forall b\forall c\forall d[P(a) \land P(b) \land Q(c) \land Q(d) \land \\
&R(a, c) \land R(b, d) \rightarrow \\
&a = b \iff c = d]
\end{align*}
(R is a \textit{bijection} between \(P\) and \(Q\))

(19) \textit{tdiscr-prop-mpartn}(P, e) :=
\begin{align*}
&\textit{prop-mpartn}(P, e) \land \\
&\forall e'\forall e''[P(e') \land P(e'') \land \tau(e') \circ \tau(e'') \rightarrow e' = e'']
\end{align*}
(P is a \textit{temporally discrete proper mereological partition} of \(e\))

(20) (distributive) po: \([v_{[+\text{perf}]} \rightarrow [v_{[-\text{perf}, \text{int}]} \alpha]]\)

(21) (distributive) po \(\sim\)
\begin{align*}
\lambda R \lambda \cdot \lambda \cdot [\exists P \exists Q[\textit{tdiscr-prop-mpartn}(P, e) \land \\
\textit{prop-mpartn}(Q, x) \land \textit{biject}(R, P, Q)]]
\end{align*}
=: \textit{distr-po}

(22) \(\sigma(P) := \forall a[\forall b[b \circ a \rightarrow \exists c[P(c) \land c \circ b]]\)
(the sum of \(P\))

A sample derivation:

(23) Rebeka pozrywała\(^p\) wszystkie kwiaty. (= (9a))
‘Rebecca picked all the flowers (successively).’
(24) a. $z[e] \cdot \text{rwa´c}$ 'pick' $\sim \lambda y \lambda x \lambda e[pick(e, x, y)]$

b. $\text{impf}_e \sim \lambda S \lambda y \lambda x \lambda e[S(e, x, y)]$

\hspace{1cm} (Remark: the meaning of impf_e is the identity function)

c. $\text{impf}_e(z[e] \cdot \text{rwa´c}) (= \text{zrywa´c}^4) \sim \lambda y \lambda x \lambda e[pick(e, x, y)]

(25) a. $\text{distr-po}^` \sim \lambda S \lambda y \lambda x \lambda e[distr-po(e, y, S(x))]$

\hspace{1cm} (Remark: this is po- for transitive verbs)

b. $\text{po} \cdot \text{zrywa´c}^p \sim \text{distr-po}'(pick) = \lambda y \lambda x \lambda e[\exists P \exists Q[tdiscr-prop-mpartn(P, e) \land prop-mpartn(Q, all-the-flowers) \land biject(pick(x), P, Q)]]$

(26) a. wszystkie kwiaty 'all the flowers' $\sim \iota y[y = \sigma(\lambda z[flowers(z)]) \land flowers(y)]$

\hspace{1cm} =: \text{all-the-flowers}

b. Rebeka $\sim rebecca$

(27) [Rebeka [[\text{po} \cdot \text{zrywa´c}^p] wszystkie kwiaty]] $\sim \lambda e[\exists P \exists Q[tdiscr-prop-mpartn(P, e) \land prop-mpartn(Q, all-the-flowers) \land biject(pick(rebecca), P, Q)]]$

An unacceptable example:

(28) #Rebeka po·\text{zrywała}^p kwiat. (= (10a))

'Rebecca pick the/a flower (successively)-tooltip.'
(29) \#[Rebeka [[po·zrywać] kwiat]] \[\sim\]
\[\lambda e[\exists P \exists Q [tdiscr-prop-mpartn(P, e) \land \prop-mpartn(Q, the-flower) \land \biject(pick(rebecca), P, Q)]]\]

The problem is that there is no natural way of picking at least two nonoverlapping parts of the flower, but this would be required by the meaning of the sentence.

References